{ "cells": [ { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import os\n", "import pandas as pd\n", "import janitor\n", "import matplotlib.pyplot as plt\n", "import seaborn as sns\n", "from matplotlib.ticker import MaxNLocator\n", "import math\n", "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 12, "outputs": [], "source": [ "outdir=\"EU_CH_scope\"\n", "\n", "appln = pd.read_csv(f\"{outdir}/tls_201_scope.csv\")\n", "\n", "appln_title = pd.read_csv(f\"{outdir}/tls_202_scope.csv\")\n", "\n", "pers = pd.read_csv(f\"{outdir}/tls_206_scope.csv\")\n", "pers['psn_sector'] = pers['psn_sector'].fillna(\"UNKNOWN\")\n", "\n", "appln_pers = pd.read_csv(f\"{outdir}/tls_207_scope.csv\")\n", "\n", "appln_cpc = pd.read_csv(f\"{outdir}/tls_224_scope.csv\")\n", "\n", "cpc_def = pd. read_csv(\"CPC_data/cpc_defs.csv\", low_memory=False)" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 13, "outputs": [ { "data": { "text/plain": "65136" }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "len(appln)" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 14, "outputs": [ { "data": { "text/plain": " cpc_id cpc_name \n12725 A61B1/000096 {using artificial intelligence} \\\n13746 A61B5/72 {Signal processing specially adapted for physi... \n13764 A61B5/7264 {Classification of physiological signals or da... \n13897 A61B6/52 {Devices using data or image processing specia... \n14016 A61B8/52 {Devices using data or image processing specia... \n... ... ... \n246159 Y10S128/924 using artificial intelligence \n246160 Y10S128/925 Neural network \n248454 Y10S323/909 Remote sensing \n250570 Y10S706/00 Data processing: artificial intelligence \n250571 Y10S706/90 Fuzzy logic \n\n section class subclass group main_group cpc_version \n12725 A 61.0 B 1.0 96.0 2023 \\\n13746 A 61.0 B 5.0 72.0 2023 \n13764 A 61.0 B 5.0 7264.0 2023 \n13897 A 61.0 B 6.0 52.0 2023 \n14016 A 61.0 B 8.0 52.0 2023 \n... ... ... ... ... ... ... \n246159 Y 10.0 S 128.0 924.0 2023 \n246160 Y 10.0 S 128.0 925.0 2023 \n248454 Y 10.0 S 323.0 909.0 2023 \n250570 Y 10.0 S 706.0 0.0 2023 \n250571 Y 10.0 S 706.0 90.0 2023 \n\n version https://git-lfs.github.com/spec/v1 \n12725 NaN \\\n13746 NaN \n13764 NaN \n13897 NaN \n14016 NaN \n... ... \n246159 NaN \n246160 NaN \n248454 NaN \n250570 NaN \n250571 NaN \n\n cpc_taxonomy \n12725 [('A', 'HUMAN NECESSITIES'), ('A61', 'MEDICAL ... \\\n13746 [('A', 'HUMAN NECESSITIES'), ('A61', 'MEDICAL ... \n13764 [('A', 'HUMAN NECESSITIES'), ('A61', 'MEDICAL ... \n13897 [('A', 'HUMAN NECESSITIES'), ('A61', 'MEDICAL ... \n14016 [('A', 'HUMAN NECESSITIES'), ('A61', 'MEDICAL ... \n... ... \n246159 [('Y', 'GENERAL TAGGING OF NEW TECHNOLOGICAL D... \n246160 [('Y', 'GENERAL TAGGING OF NEW TECHNOLOGICAL D... \n248454 [('Y', 'GENERAL TAGGING OF NEW TECHNOLOGICAL D... \n250570 [('Y', 'GENERAL TAGGING OF NEW TECHNOLOGICAL D... \n250571 [('Y', 'GENERAL TAGGING OF NEW TECHNOLOGICAL D... \n\n cpc_fullname \n12725 HUMAN NECESSITIES<>MEDICAL OR VETERINARY SCIEN... \\\n13746 HUMAN NECESSITIES<>MEDICAL OR VETERINARY SCIEN... \n13764 HUMAN NECESSITIES<>MEDICAL OR VETERINARY SCIEN... \n13897 HUMAN NECESSITIES<>MEDICAL OR VETERINARY SCIEN... \n14016 HUMAN NECESSITIES<>MEDICAL OR VETERINARY SCIEN... \n... ... \n246159 GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPME... \n246160 GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPME... \n248454 GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPME... \n250570 GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPME... \n250571 GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPME... \n\n tax_level_0 \n12725 HUMAN NECESSITIES \\\n13746 HUMAN NECESSITIES \n13764 HUMAN NECESSITIES \n13897 HUMAN NECESSITIES \n14016 HUMAN NECESSITIES \n... ... \n246159 GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPME... \n246160 GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPME... \n248454 GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPME... \n250570 GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPME... \n250571 GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPME... \n\n tax_level_1 \n12725 MEDICAL OR VETERINARY SCIENCE; HYGIENE \\\n13746 MEDICAL OR VETERINARY SCIENCE; HYGIENE \n13764 MEDICAL OR VETERINARY SCIENCE; HYGIENE \n13897 MEDICAL OR VETERINARY SCIENCE; HYGIENE \n14016 MEDICAL OR VETERINARY SCIENCE; HYGIENE \n... ... \n246159 TECHNICAL SUBJECTS COVERED BY FORMER USPC \n246160 TECHNICAL SUBJECTS COVERED BY FORMER USPC \n248454 TECHNICAL SUBJECTS COVERED BY FORMER USPC \n250570 TECHNICAL SUBJECTS COVERED BY FORMER USPC \n250571 TECHNICAL SUBJECTS COVERED BY FORMER USPC \n\n tax_level_2 \n12725 DIAGNOSIS; SURGERY; IDENTIFICATION (analysing ... \\\n13746 DIAGNOSIS; SURGERY; IDENTIFICATION (analysing ... \n13764 DIAGNOSIS; SURGERY; IDENTIFICATION (analysing ... \n13897 DIAGNOSIS; SURGERY; IDENTIFICATION (analysing ... \n14016 DIAGNOSIS; SURGERY; IDENTIFICATION (analysing ... \n... ... \n246159 TECHNICAL SUBJECTS COVERED BY FORMER USPC CROS... \n246160 TECHNICAL SUBJECTS COVERED BY FORMER USPC CROS... \n248454 TECHNICAL SUBJECTS COVERED BY FORMER USPC CROS... \n250570 TECHNICAL SUBJECTS COVERED BY FORMER USPC CROS... \n250571 TECHNICAL SUBJECTS COVERED BY FORMER USPC CROS... \n\n tax_level_3 \n12725 Instruments for performing medical examination... \\\n13746 {Signal processing specially adapted for physi... \n13764 {Signal processing specially adapted for physi... \n13897 {Devices using data or image processing specia... \n14016 {Devices using data or image processing specia... \n... ... \n246159 Computer assisted medical diagnostics \n246160 Computer assisted medical diagnostics \n248454 Remote sensing \n250570 Data processing: artificial intelligence \n250571 Fuzzy logic \n\n tax_level_4 \n12725 {of image signals during a use of endoscope} \\\n13746 NaN \n13764 {using Wavelet transforms} \n13897 NaN \n14016 NaN \n... ... \n246159 using artificial intelligence \n246160 Neural network \n248454 NaN \n250570 NaN \n250571 NaN \n\n tax_level_5 tax_level_6 \n12725 {using artificial intelligence} NaN \\\n13746 NaN NaN \n13764 {Classification of physiological signals or da... NaN \n13897 NaN NaN \n14016 NaN NaN \n... ... ... \n246159 NaN NaN \n246160 NaN NaN \n248454 NaN NaN \n250570 NaN NaN \n250571 NaN NaN \n\n tax_level_7 data_scope \n12725 NaN True \n13746 NaN True \n13764 NaN True \n13897 NaN True \n14016 NaN True \n... ... ... \n246159 NaN True \n246160 NaN True \n248454 NaN True \n250570 NaN True \n250571 NaN True \n\n[358 rows x 20 columns]", "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
cpc_idcpc_namesectionclasssubclassgroupmain_groupcpc_versionversion https://git-lfs.github.com/spec/v1cpc_taxonomycpc_fullnametax_level_0tax_level_1tax_level_2tax_level_3tax_level_4tax_level_5tax_level_6tax_level_7data_scope
12725A61B1/000096{using artificial intelligence}A61.0B1.096.02023NaN[('A', 'HUMAN NECESSITIES'), ('A61', 'MEDICAL ...HUMAN NECESSITIES<>MEDICAL OR VETERINARY SCIEN...HUMAN NECESSITIESMEDICAL OR VETERINARY SCIENCE; HYGIENEDIAGNOSIS; SURGERY; IDENTIFICATION (analysing ...Instruments for performing medical examination...{of image signals during a use of endoscope}{using artificial intelligence}NaNNaNTrue
13746A61B5/72{Signal processing specially adapted for physi...A61.0B5.072.02023NaN[('A', 'HUMAN NECESSITIES'), ('A61', 'MEDICAL ...HUMAN NECESSITIES<>MEDICAL OR VETERINARY SCIEN...HUMAN NECESSITIESMEDICAL OR VETERINARY SCIENCE; HYGIENEDIAGNOSIS; SURGERY; IDENTIFICATION (analysing ...{Signal processing specially adapted for physi...NaNNaNNaNNaNTrue
13764A61B5/7264{Classification of physiological signals or da...A61.0B5.07264.02023NaN[('A', 'HUMAN NECESSITIES'), ('A61', 'MEDICAL ...HUMAN NECESSITIES<>MEDICAL OR VETERINARY SCIEN...HUMAN NECESSITIESMEDICAL OR VETERINARY SCIENCE; HYGIENEDIAGNOSIS; SURGERY; IDENTIFICATION (analysing ...{Signal processing specially adapted for physi...{using Wavelet transforms}{Classification of physiological signals or da...NaNNaNTrue
13897A61B6/52{Devices using data or image processing specia...A61.0B6.052.02023NaN[('A', 'HUMAN NECESSITIES'), ('A61', 'MEDICAL ...HUMAN NECESSITIES<>MEDICAL OR VETERINARY SCIEN...HUMAN NECESSITIESMEDICAL OR VETERINARY SCIENCE; HYGIENEDIAGNOSIS; SURGERY; IDENTIFICATION (analysing ...{Devices using data or image processing specia...NaNNaNNaNNaNTrue
14016A61B8/52{Devices using data or image processing specia...A61.0B8.052.02023NaN[('A', 'HUMAN NECESSITIES'), ('A61', 'MEDICAL ...HUMAN NECESSITIES<>MEDICAL OR VETERINARY SCIEN...HUMAN NECESSITIESMEDICAL OR VETERINARY SCIENCE; HYGIENEDIAGNOSIS; SURGERY; IDENTIFICATION (analysing ...{Devices using data or image processing specia...NaNNaNNaNNaNTrue
...............................................................
246159Y10S128/924using artificial intelligenceY10.0S128.0924.02023NaN[('Y', 'GENERAL TAGGING OF NEW TECHNOLOGICAL D...GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPME...GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPME...TECHNICAL SUBJECTS COVERED BY FORMER USPCTECHNICAL SUBJECTS COVERED BY FORMER USPC CROS...Computer assisted medical diagnosticsusing artificial intelligenceNaNNaNNaNTrue
246160Y10S128/925Neural networkY10.0S128.0925.02023NaN[('Y', 'GENERAL TAGGING OF NEW TECHNOLOGICAL D...GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPME...GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPME...TECHNICAL SUBJECTS COVERED BY FORMER USPCTECHNICAL SUBJECTS COVERED BY FORMER USPC CROS...Computer assisted medical diagnosticsNeural networkNaNNaNNaNTrue
248454Y10S323/909Remote sensingY10.0S323.0909.02023NaN[('Y', 'GENERAL TAGGING OF NEW TECHNOLOGICAL D...GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPME...GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPME...TECHNICAL SUBJECTS COVERED BY FORMER USPCTECHNICAL SUBJECTS COVERED BY FORMER USPC CROS...Remote sensingNaNNaNNaNNaNTrue
250570Y10S706/00Data processing: artificial intelligenceY10.0S706.00.02023NaN[('Y', 'GENERAL TAGGING OF NEW TECHNOLOGICAL D...GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPME...GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPME...TECHNICAL SUBJECTS COVERED BY FORMER USPCTECHNICAL SUBJECTS COVERED BY FORMER USPC CROS...Data processing: artificial intelligenceNaNNaNNaNNaNTrue
250571Y10S706/90Fuzzy logicY10.0S706.090.02023NaN[('Y', 'GENERAL TAGGING OF NEW TECHNOLOGICAL D...GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPME...GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPME...TECHNICAL SUBJECTS COVERED BY FORMER USPCTECHNICAL SUBJECTS COVERED BY FORMER USPC CROS...Fuzzy logicNaNNaNNaNNaNTrue
\n

358 rows × 20 columns

\n
" }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cpc_def[cpc_def[\"data_scope\"]==True]" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 16, "outputs": [ { "data": { "text/plain": " appln_id appln_auth appln_nr appln_kind appln_filing_date \n33934 497577215 BR 112014017433 A 2013-01-15 \\\n2981 375177905 TW 100128243 A 2011-08-08 \n34857 500398671 US 201815918757 A 2018-03-12 \n14330 425909090 US 201313948663 A 2013-07-23 \n12337 421949639 US 201313799810 A 2013-03-13 \n... ... ... ... ... ... \n20853 451232832 US 201314892356 A 2013-06-05 \n57178 558607779 WO 2020082459 W 2020-03-31 \n60907 571924211 WO 2022025191 W 2022-04-27 \n36638 505223478 CA 3027451 A 2017-06-14 \n33120 496062856 US 201615739023 A 2016-06-21 \n\n appln_filing_year appln_nr_original ipr_type receiving_office \n33934 2013 112014017433 PI \\\n2981 2011 100128243 PI \n34857 2018 15918757 PI \n14330 2013 13948663 PI \n12337 2013 13799810 PI \n... ... ... ... ... \n20853 2013 14892356 PI \n57178 2020 CN2020/082459 PI CN \n60907 2022 EP2022/025191 PI EP \n36638 2017 3027451 PI \n33120 2016 15739023 PI \n\n internat_appln_id ... earliest_publn_date earliest_publn_year \n33934 379982555 ... 2017-06-13 2017 \\\n2981 0 ... 2012-04-01 2012 \n34857 329543408 ... 2018-09-27 2018 \n14330 0 ... 2015-01-29 2015 \n12337 0 ... 2014-09-18 2014 \n... ... ... ... ... \n20853 424456242 ... 2016-04-14 2016 \n57178 0 ... 2021-10-07 2021 \n60907 0 ... 2022-11-24 2022 \n36638 479992612 ... 2017-12-21 2017 \n33120 473240582 ... 2018-06-21 2018 \n\n earliest_pat_publn_id granted docdb_family_id inpadoc_family_id \n33934 490635945 N 47605490 379982555 \\\n2981 380050378 N 44677979 336552941 \n34857 500398672 Y 43858368 273565445 \n14330 425909091 Y 51167733 419869995 \n12337 421949640 Y 50241294 416000492 \n... ... ... ... ... \n20853 451232833 Y 52007415 424456242 \n57178 558607780 N 77927568 558607779 \n60907 583339295 N 81756758 571924211 \n36638 505223479 N 58241906 476382802 \n33120 496062857 Y 53496595 442016492 \n\n docdb_family_size nb_citing_docdb_fam nb_applicants nb_inventors \n33934 9 6 1 4 \n2981 5 6 1 3 \n34857 12 17 1 3 \n14330 3 19 1 4 \n12337 4 19 1 2 \n... ... ... ... ... \n20853 7 14 1 3 \n57178 3 0 2 3 \n60907 2 0 1 1 \n36638 5 3 1 3 \n33120 3 4 2 2 \n\n[100 rows x 26 columns]", "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
appln_idappln_authappln_nrappln_kindappln_filing_dateappln_filing_yearappln_nr_originalipr_typereceiving_officeinternat_appln_id...earliest_publn_dateearliest_publn_yearearliest_pat_publn_idgranteddocdb_family_idinpadoc_family_iddocdb_family_sizenb_citing_docdb_famnb_applicantsnb_inventors
33934497577215BR112014017433A2013-01-152013112014017433PI379982555...2017-06-132017490635945N476054903799825559614
2981375177905TW100128243A2011-08-082011100128243PI0...2012-04-012012380050378N446779793365529415613
34857500398671US201815918757A2018-03-12201815918757PI329543408...2018-09-272018500398672Y43858368273565445121713
14330425909090US201313948663A2013-07-23201313948663PI0...2015-01-292015425909091Y5116773341986999531914
12337421949639US201313799810A2013-03-13201313799810PI0...2014-09-182014421949640Y5024129441600049241912
..................................................................
20853451232832US201314892356A2013-06-05201314892356PI424456242...2016-04-142016451232833Y5200741542445624271413
57178558607779WO2020082459W2020-03-312020CN2020/082459PICN0...2021-10-072021558607780N779275685586077793023
60907571924211WO2022025191W2022-04-272022EP2022/025191PIEP0...2022-11-242022583339295N817567585719242112011
36638505223478CA3027451A2017-06-1420173027451PI479992612...2017-12-212017505223479N582419064763828025313
33120496062856US201615739023A2016-06-21201615739023PI473240582...2018-06-212018496062857Y534965954420164923422
\n

100 rows × 26 columns

\n
" }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "appln.sample(100)" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 15, "outputs": [ { "data": { "text/plain": " appln_id appln_title_lg \n46635 531117386 en \\\n44552 526116621 en \n45476 528352131 en \n23619 470837180 en \n33233 496310125 en \n... ... ... \n61597 574732234 en \n54568 551189734 en \n35847 503315942 en \n49995 540002470 en \n14915 437594613 en \n\n appln_title \n46635 FRACTURING OPERATIONS PUMP FLEET BALANCE CONTR... \n44552 SHEETLIKE COMPOSITE, IN PARTICULAR FOR THE PRO... \n45476 NATURALLY SWEET ENHANCER COMPOSITION \n23619 METHOD AND APPARATUS FOR MONITORING RADIO LINK... \n33233 METHOD AND DEVICE FOR CONNECTING TO ACCESS POI... \n... ... \n61597 ADJUSTMENT MECHANISM FOR CIRCUIT BREAKER AND C... \n54568 METHODS FOR PDCCH MONITORING, USER EQUIPMENT, ... \n35847 SINGLE-WHEEL DRIVE COMPONENT FOR A MOTOR VEHIC... \n49995 METHODS PROVIDING V2X APPLICATION SERVER REGIS... \n14915 Carbon dots (c dots), method for their prepara... \n\n[100 rows x 3 columns]", "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
appln_idappln_title_lgappln_title
46635531117386enFRACTURING OPERATIONS PUMP FLEET BALANCE CONTR...
44552526116621enSHEETLIKE COMPOSITE, IN PARTICULAR FOR THE PRO...
45476528352131enNATURALLY SWEET ENHANCER COMPOSITION
23619470837180enMETHOD AND APPARATUS FOR MONITORING RADIO LINK...
33233496310125enMETHOD AND DEVICE FOR CONNECTING TO ACCESS POI...
............
61597574732234enADJUSTMENT MECHANISM FOR CIRCUIT BREAKER AND C...
54568551189734enMETHODS FOR PDCCH MONITORING, USER EQUIPMENT, ...
35847503315942enSINGLE-WHEEL DRIVE COMPONENT FOR A MOTOR VEHIC...
49995540002470enMETHODS PROVIDING V2X APPLICATION SERVER REGIS...
14915437594613enCarbon dots (c dots), method for their prepara...
\n

100 rows × 3 columns

\n
" }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "appln_title.sample(100)" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": null, "outputs": [], "source": [], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 23, "outputs": [ { "data": { "text/plain": " appln_id appln_auth appln_nr appln_kind appln_filing_date \n0 330225325 EP 11150195 A 2011-01-05 \\\n1 330225397 EP 11150231 A 2011-01-05 \n2 330322632 EP 11150485 A 2011-01-10 \n3 330326785 EP 11150605 A 2011-01-11 \n4 330350961 EP 11150683 A 2011-01-12 \n\n appln_filing_year appln_nr_original ipr_type receiving_office \n0 2011 11150195 PI \\\n1 2011 11150231 PI \n2 2011 11150485 PI \n3 2011 11150605 PI \n4 2011 11150683 PI \n\n internat_appln_id ... earliest_pat_publn_id granted docdb_family_id \n0 0 ... 335277427 Y 43754737 \\\n1 0 ... 335277736 Y 43619902 \n2 0 ... 364719889 Y 43991052 \n3 0 ... 335277720 N 43023665 \n4 0 ... 364923578 N 43881056 \n\n inpadoc_family_id docdb_family_size nb_citing_docdb_fam nb_applicants \n0 330225325 4 16 1 \\\n1 330225397 6 56 1 \n2 330322632 2 5 1 \n3 328518903 6 9 1 \n4 330350961 7 13 2 \n\n nb_inventors appln_title_lg \n0 1 en \\\n1 9 en \n2 2 en \n3 3 en \n4 5 en \n\n appln_title \n0 Beverage preparation machine \n1 Screwdriving tool having a driving tool with a... \n2 Method and system for recommending contextual ... \n3 Apparatus and method for continuous casting of... \n4 A method and an apparatus for treating at leas... \n\n[5 rows x 28 columns]", "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
appln_idappln_authappln_nrappln_kindappln_filing_dateappln_filing_yearappln_nr_originalipr_typereceiving_officeinternat_appln_id...earliest_pat_publn_idgranteddocdb_family_idinpadoc_family_iddocdb_family_sizenb_citing_docdb_famnb_applicantsnb_inventorsappln_title_lgappln_title
0330225325EP11150195A2011-01-05201111150195PI0...335277427Y4375473733022532541611enBeverage preparation machine
1330225397EP11150231A2011-01-05201111150231PI0...335277736Y4361990233022539765619enScrewdriving tool having a driving tool with a...
2330322632EP11150485A2011-01-10201111150485PI0...364719889Y439910523303226322512enMethod and system for recommending contextual ...
3330326785EP11150605A2011-01-11201111150605PI0...335277720N430236653285189036913enApparatus and method for continuous casting of...
4330350961EP11150683A2011-01-12201111150683PI0...364923578N4388105633035096171325enA method and an apparatus for treating at leas...
\n

5 rows × 28 columns

\n
" }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "appln_data = appln.merge(appln_title, on=\"appln_id\")\n", "appln_data.head()" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 24, "outputs": [ { "data": { "text/plain": "array(['EP', 'WO', 'LU', 'FI', 'NO', 'FR', 'GB', 'KR', 'ES', 'US', 'CA',\n 'DO', 'EC', 'DE', 'UY', 'IL', 'SV', 'PL', 'TR', 'CO', 'CR', 'TW',\n 'MA', 'PE', 'SG', 'CU', 'BE', 'DK', 'AR', 'AP', 'HR', 'MX', 'BR',\n 'EA', 'RU', 'AU', 'MC', 'HU', 'PT', 'NL', 'HN', 'AT', 'RO', 'SM',\n 'CH', 'SI', 'IS', 'CZ', 'HK', 'MD', 'JP', 'CN', 'RS', 'GT', 'UA',\n 'CL', 'SK', 'LT', 'PH', 'MY', 'IN', 'VN', 'TN', 'CY', 'GE', 'ZA',\n 'SE', 'ME', 'JO', 'NI', 'SA'], dtype=object)" }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "appln_data[\"appln_auth\"].unique()" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 25, "outputs": [ { "data": { "text/plain": " person_id appln_id applt_seq_nr invt_seq_nr\n0 1 413601768 1 0\n1 21 332015605 1 0\n2 21 333490084 1 0\n3 21 335903805 1 0\n4 76 352908776 1 0\n... ... ... ... ...\n1025446 88836321 577982223 1 0\n1025447 88836333 583342135 0 4\n1025448 88836333 583342207 0 3\n1025449 88836333 585957705 0 5\n1025450 88836337 579601496 0 1\n\n[1025451 rows x 4 columns]", "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
person_idappln_idapplt_seq_nrinvt_seq_nr
0141360176810
12133201560510
22133349008410
32133590380510
47635290877610
...............
10254468883632157798222310
10254478883633358334213504
10254488883633358334220703
10254498883633358595770505
10254508883633757960149601
\n

1025451 rows × 4 columns

\n
" }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ "appln_pers" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 26, "outputs": [ { "data": { "text/plain": " person_id person_name person_name_orig_lg \n0 1 Nokia Corporation Nokia Corporation \\\n1 128 Nokia Siemens Networks Oy Nokia Siemens Networks Oy \n2 5217785 Nokia Corporation Nokia Corporation \n3 5217811 Nokia Corporation Nokia Corporation \n4 5232170 Nokia Siemens Networks Oy Nokia Siemens Networks Oy \n... ... ... ... \n354633 88836234 WONG, Chun Lok WONG, Chun Lok \n354634 88836257 XIAONING YE XIAONING YE \n354635 88836321 ZAI LAB (US) LLC ZAI LAB (US) LLC \n354636 88836333 ZHANG, Haocheng 张皓程 \n354637 88836337 ZHANG, Yangjun ZHANG, Yangjun \n\n person_address person_ctry_code nuts nuts_level \n0 Keilalahdentie 4,02150 Espoo FI FI1B1 3 \\\n1 Karaportti 3,02610 Espoo FI FI1B1 3 \n2 Espoo FI FI 0 \n3 NaN FI FI 0 \n4 Espoo FI FI 0 \n... ... ... ... ... \n354633 NaN US NaN 9 \n354634 Portland, Oregon US US NaN 9 \n354635 NaN US NaN 9 \n354636 NaN US NaN 9 \n354637 NaN US NaN 9 \n\n doc_std_name_id doc_std_name psn_id \n0 1 NOKIA CORP 23782051 \\\n1 112 NOKIA SIEMENS NETWORKS OY 23782129 \n2 1 NOKIA CORP 23782051 \n3 1 NOKIA CORP 23782051 \n4 112 NOKIA SIEMENS NETWORKS OY 23782129 \n... ... ... ... \n354633 30867225 WONG CHUN LOK 188836234 \n354634 8004293 XIAONING YE 188836257 \n354635 39363494 ZAI LAB US LLC 188836321 \n354636 7682590 ZHANG HAOCHENG 188836333 \n354637 2112344 ZHANG YANGJUN 188836337 \n\n psn_name psn_level psn_sector han_id han_name \n0 NOKIA CORPORATION 2 COMPANY 2125445 NOKIA CORP \\\n1 NOKIA NETWORKS 2 COMPANY 2125445 NOKIA CORP \n2 NOKIA CORPORATION 2 COMPANY 2125445 NOKIA CORP \n3 NOKIA CORPORATION 2 COMPANY 2125445 NOKIA CORP \n4 NOKIA NETWORKS 2 COMPANY 2125445 NOKIA CORP \n... ... ... ... ... ... \n354633 WONG, Chun Lok 0 UNKNOWN 188836234 WONG, Chun Lok \n354634 XIAONING YE 0 UNKNOWN 188836257 XIAONING YE \n354635 ZAI LAB (US) LLC 0 UNKNOWN 188836321 ZAI LAB (US) LLC \n354636 ZHANG, Haocheng 0 UNKNOWN 188836333 ZHANG, Haocheng \n354637 ZHANG, Yangjun 0 UNKNOWN 188836337 ZHANG, Yangjun \n\n han_harmonized psn_sector_primary \n0 2 COMPANY \n1 2 COMPANY \n2 2 COMPANY \n3 2 COMPANY \n4 2 COMPANY \n... ... ... \n354633 0 UNKNOWN \n354634 0 UNKNOWN \n354635 0 UNKNOWN \n354636 0 UNKNOWN \n354637 0 UNKNOWN \n\n[354638 rows x 17 columns]", "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
person_idperson_nameperson_name_orig_lgperson_addressperson_ctry_codenutsnuts_leveldoc_std_name_iddoc_std_namepsn_idpsn_namepsn_levelpsn_sectorhan_idhan_namehan_harmonizedpsn_sector_primary
01Nokia CorporationNokia CorporationKeilalahdentie 4,02150 EspooFIFI1B131NOKIA CORP23782051NOKIA CORPORATION2COMPANY2125445NOKIA CORP2COMPANY
1128Nokia Siemens Networks OyNokia Siemens Networks OyKaraportti 3,02610 EspooFIFI1B13112NOKIA SIEMENS NETWORKS OY23782129NOKIA NETWORKS2COMPANY2125445NOKIA CORP2COMPANY
25217785Nokia CorporationNokia CorporationEspooFIFI01NOKIA CORP23782051NOKIA CORPORATION2COMPANY2125445NOKIA CORP2COMPANY
35217811Nokia CorporationNokia CorporationNaNFIFI01NOKIA CORP23782051NOKIA CORPORATION2COMPANY2125445NOKIA CORP2COMPANY
45232170Nokia Siemens Networks OyNokia Siemens Networks OyEspooFIFI0112NOKIA SIEMENS NETWORKS OY23782129NOKIA NETWORKS2COMPANY2125445NOKIA CORP2COMPANY
......................................................
35463388836234WONG, Chun LokWONG, Chun LokNaNUSNaN930867225WONG CHUN LOK188836234WONG, Chun Lok0UNKNOWN188836234WONG, Chun Lok0UNKNOWN
35463488836257XIAONING YEXIAONING YEPortland, Oregon USUSNaN98004293XIAONING YE188836257XIAONING YE0UNKNOWN188836257XIAONING YE0UNKNOWN
35463588836321ZAI LAB (US) LLCZAI LAB (US) LLCNaNUSNaN939363494ZAI LAB US LLC188836321ZAI LAB (US) LLC0UNKNOWN188836321ZAI LAB (US) LLC0UNKNOWN
35463688836333ZHANG, Haocheng张皓程NaNUSNaN97682590ZHANG HAOCHENG188836333ZHANG, Haocheng0UNKNOWN188836333ZHANG, Haocheng0UNKNOWN
35463788836337ZHANG, YangjunZHANG, YangjunNaNUSNaN92112344ZHANG YANGJUN188836337ZHANG, Yangjun0UNKNOWN188836337ZHANG, Yangjun0UNKNOWN
\n

354638 rows × 17 columns

\n
" }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" }, { "data": { "text/plain": " person_id person_name person_name_orig_lg \n0 1 Nokia Corporation Nokia Corporation \\\n1 128 Nokia Siemens Networks Oy Nokia Siemens Networks Oy \n2 5217785 Nokia Corporation Nokia Corporation \n3 5217811 Nokia Corporation Nokia Corporation \n4 5232170 Nokia Siemens Networks Oy Nokia Siemens Networks Oy \n... ... ... ... \n354633 88836234 WONG, Chun Lok WONG, Chun Lok \n354634 88836257 XIAONING YE XIAONING YE \n354635 88836321 ZAI LAB (US) LLC ZAI LAB (US) LLC \n354636 88836333 ZHANG, Haocheng 张皓程 \n354637 88836337 ZHANG, Yangjun ZHANG, Yangjun \n\n person_address person_ctry_code nuts nuts_level \n0 Keilalahdentie 4,02150 Espoo FI FI1B1 3 \\\n1 Karaportti 3,02610 Espoo FI FI1B1 3 \n2 Espoo FI FI 0 \n3 NaN FI FI 0 \n4 Espoo FI FI 0 \n... ... ... ... ... \n354633 NaN US NaN 9 \n354634 Portland, Oregon US US NaN 9 \n354635 NaN US NaN 9 \n354636 NaN US NaN 9 \n354637 NaN US NaN 9 \n\n doc_std_name_id doc_std_name psn_id \n0 1 NOKIA CORP 23782051 \\\n1 112 NOKIA SIEMENS NETWORKS OY 23782129 \n2 1 NOKIA CORP 23782051 \n3 1 NOKIA CORP 23782051 \n4 112 NOKIA SIEMENS NETWORKS OY 23782129 \n... ... ... ... \n354633 30867225 WONG CHUN LOK 188836234 \n354634 8004293 XIAONING YE 188836257 \n354635 39363494 ZAI LAB US LLC 188836321 \n354636 7682590 ZHANG HAOCHENG 188836333 \n354637 2112344 ZHANG YANGJUN 188836337 \n\n psn_name psn_level psn_sector han_id han_name \n0 NOKIA CORPORATION 2 COMPANY 2125445 NOKIA CORP \\\n1 NOKIA NETWORKS 2 COMPANY 2125445 NOKIA CORP \n2 NOKIA CORPORATION 2 COMPANY 2125445 NOKIA CORP \n3 NOKIA CORPORATION 2 COMPANY 2125445 NOKIA CORP \n4 NOKIA NETWORKS 2 COMPANY 2125445 NOKIA CORP \n... ... ... ... ... ... \n354633 WONG, Chun Lok 0 UNKNOWN 188836234 WONG, Chun Lok \n354634 XIAONING YE 0 UNKNOWN 188836257 XIAONING YE \n354635 ZAI LAB (US) LLC 0 UNKNOWN 188836321 ZAI LAB (US) LLC \n354636 ZHANG, Haocheng 0 UNKNOWN 188836333 ZHANG, Haocheng \n354637 ZHANG, Yangjun 0 UNKNOWN 188836337 ZHANG, Yangjun \n\n han_harmonized psn_sector_primary \n0 2 COMPANY \n1 2 COMPANY \n2 2 COMPANY \n3 2 COMPANY \n4 2 COMPANY \n... ... ... \n354633 0 UNKNOWN \n354634 0 UNKNOWN \n354635 0 UNKNOWN \n354636 0 UNKNOWN \n354637 0 UNKNOWN \n\n[354638 rows x 17 columns]", "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
person_idperson_nameperson_name_orig_lgperson_addressperson_ctry_codenutsnuts_leveldoc_std_name_iddoc_std_namepsn_idpsn_namepsn_levelpsn_sectorhan_idhan_namehan_harmonizedpsn_sector_primary
01Nokia CorporationNokia CorporationKeilalahdentie 4,02150 EspooFIFI1B131NOKIA CORP23782051NOKIA CORPORATION2COMPANY2125445NOKIA CORP2COMPANY
1128Nokia Siemens Networks OyNokia Siemens Networks OyKaraportti 3,02610 EspooFIFI1B13112NOKIA SIEMENS NETWORKS OY23782129NOKIA NETWORKS2COMPANY2125445NOKIA CORP2COMPANY
25217785Nokia CorporationNokia CorporationEspooFIFI01NOKIA CORP23782051NOKIA CORPORATION2COMPANY2125445NOKIA CORP2COMPANY
35217811Nokia CorporationNokia CorporationNaNFIFI01NOKIA CORP23782051NOKIA CORPORATION2COMPANY2125445NOKIA CORP2COMPANY
45232170Nokia Siemens Networks OyNokia Siemens Networks OyEspooFIFI0112NOKIA SIEMENS NETWORKS OY23782129NOKIA NETWORKS2COMPANY2125445NOKIA CORP2COMPANY
......................................................
35463388836234WONG, Chun LokWONG, Chun LokNaNUSNaN930867225WONG CHUN LOK188836234WONG, Chun Lok0UNKNOWN188836234WONG, Chun Lok0UNKNOWN
35463488836257XIAONING YEXIAONING YEPortland, Oregon USUSNaN98004293XIAONING YE188836257XIAONING YE0UNKNOWN188836257XIAONING YE0UNKNOWN
35463588836321ZAI LAB (US) LLCZAI LAB (US) LLCNaNUSNaN939363494ZAI LAB US LLC188836321ZAI LAB (US) LLC0UNKNOWN188836321ZAI LAB (US) LLC0UNKNOWN
35463688836333ZHANG, Haocheng张皓程NaNUSNaN97682590ZHANG HAOCHENG188836333ZHANG, Haocheng0UNKNOWN188836333ZHANG, Haocheng0UNKNOWN
35463788836337ZHANG, YangjunZHANG, YangjunNaNUSNaN92112344ZHANG YANGJUN188836337ZHANG, Yangjun0UNKNOWN188836337ZHANG, Yangjun0UNKNOWN
\n

354638 rows × 17 columns

\n
" }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pers_sector_primary = pers.groupby(\"han_id\", as_index=False)[\"psn_sector\"].agg(\n", " lambda x: pd.Series.mode(x)[0]).rename(columns={\"psn_sector\":\"psn_sector_primary\"})\n", "persn = pers.merge(pers_sector_primary, on='han_id')\n", "persn" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 27, "outputs": [ { "data": { "text/plain": " han_id psn_sector_primary\n0 32 COMPANY\n1 54 COMPANY\n2 83 COMPANY\n3 200 COMPANY\n4 264 GOV NON-PROFIT UNIVERSITY\n... ... ...\n335519 188836234 UNKNOWN\n335520 188836257 UNKNOWN\n335521 188836321 UNKNOWN\n335522 188836333 UNKNOWN\n335523 188836337 UNKNOWN\n\n[335524 rows x 2 columns]", "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
han_idpsn_sector_primary
032COMPANY
154COMPANY
283COMPANY
3200COMPANY
4264GOV NON-PROFIT UNIVERSITY
.........
335519188836234UNKNOWN
335520188836257UNKNOWN
335521188836321UNKNOWN
335522188836333UNKNOWN
335523188836337UNKNOWN
\n

335524 rows × 2 columns

\n
" }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" }, { "data": { "text/plain": " han_id psn_sector_primary\n0 32 COMPANY\n1 54 COMPANY\n2 83 COMPANY\n3 200 COMPANY\n4 264 GOV NON-PROFIT UNIVERSITY\n... ... ...\n335519 188836234 UNKNOWN\n335520 188836257 UNKNOWN\n335521 188836321 UNKNOWN\n335522 188836333 UNKNOWN\n335523 188836337 UNKNOWN\n\n[335524 rows x 2 columns]", "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
han_idpsn_sector_primary
032COMPANY
154COMPANY
283COMPANY
3200COMPANY
4264GOV NON-PROFIT UNIVERSITY
.........
335519188836234UNKNOWN
335520188836257UNKNOWN
335521188836321UNKNOWN
335522188836333UNKNOWN
335523188836337UNKNOWN
\n

335524 rows × 2 columns

\n
" }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pers_sector_primary" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 27, "outputs": [], "source": [], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 28, "outputs": [], "source": [ "appln_merge = appln.merge(appln_title, on=\"appln_id\")#.merge(appln_pers,on=\"appln_id\")\n", "appln_merge.to_excel(\"appln_data.xlsx\", index=False)" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 29, "outputs": [], "source": [ "person_merge = appln_pers.merge(pers,on=\"person_id\")\n", "person_merge.to_excel(\"person_data.xlsx\", index=False)" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 30, "outputs": [ { "data": { "text/plain": "array(['FI', 'NL', 'FR', 'CH', 'US', 'DE', 'DK', 'AT', 'SE', 'BE', 'CN',\n 'IT', 'LU', 'IE', 'SI', 'HK', 'MO', 'CZ', 'ES', 'NO', 'PL', 'HU',\n 'CY', 'SK', 'PT', 'EE', 'MT', 'GR', 'RO', 'BG', 'LT', 'HR', 'LV'],\n dtype=object)" }, "execution_count": 30, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pers[\"person_ctry_code\"].unique()" ], "metadata": { "collapsed": false } } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.6" } }, "nbformat": 4, "nbformat_minor": 0 }