{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [ { "data": { "text/html": " \n " }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import os\n", "import numpy as np\n", "import pandas as pd\n", "import janitor\n", "import matplotlib.pyplot as plt\n", "import seaborn as sns\n", "from matplotlib.ticker import MaxNLocator\n", "import math\n", "import plotly.express as px\n", "import plotly.graph_objects as go\n", "import plotly.offline as pyo\n", "from plotly.subplots import make_subplots\n", "import plotly.graph_objects as go\n", "pyo.init_notebook_mode()\n", "\n", "import plotly.io as pio\n", "pio.renderers.default = \"plotly_mimetype+notebook\"\n", "\n", "import country_converter as coco\n", "cc = coco.CountryConverter()\n", "\n", "\n", "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 2, "outputs": [], "source": [ "os.makedirs('plot_html/PPT_plots',exist_ok=True)" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 3, "outputs": [], "source": [ "agg_ds = 'aggregated_data'" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 6, "outputs": [], "source": [ "cn = pd.read_csv(f\"{agg_ds}/01_counts_cty_yr_CN.csv\", header=None)\n", "eur = pd.read_csv(f\"{agg_ds}/01_counts_cty_yr_eu_27_GB.csv\", header=None)" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 7, "outputs": [ { "data": { "text/plain": " 0 1 2\n0 2011 AT 2395\n1 2011 BE 646\n2 2011 BG 330\n3 2011 CY 1256\n4 2011 CZ 2246\n.. ... .. ...\n7 2018 CN 3242424\n8 2019 CN 3547407\n9 2020 CN 4367505\n10 2021 CN 4012952\n11 2022 CN 2613602\n\n[359 rows x 3 columns]", "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
012
02011AT2395
12011BE646
22011BG330
32011CY1256
42011CZ2246
............
72018CN3242424
82019CN3547407
92020CN4367505
102021CN4012952
112022CN2613602
\n

359 rows × 3 columns

\n
" }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pd.concat([eur,cn])" ], "metadata": { "collapsed": false } } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.6" } }, "nbformat": 4, "nbformat_minor": 0 }