added wos selenium crawler slightly updated WOS data processing

test
radvanyimome 2 years ago
parent edf23fbcda
commit da720a6131

@ -2,19 +2,21 @@
"cells": [ "cells": [
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 50, "execution_count": 1,
"metadata": { "metadata": {
"collapsed": true "collapsed": true
}, },
"outputs": [], "outputs": [],
"source": [ "source": [
"import os\n",
"\n",
"import pandas as pd\n", "import pandas as pd\n",
"focal_countries_list = [\"Peoples R china\", \"Hong Kong\"]" "focal_countries_list = [\"Peoples R china\", \"Hong Kong\"]"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 51, "execution_count": 2,
"outputs": [], "outputs": [],
"source": [ "source": [
"country_mode = \"CU\" #CU-country-region AU-address" "country_mode = \"CU\" #CU-country-region AU-address"
@ -28,7 +30,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 52, "execution_count": 3,
"outputs": [], "outputs": [],
"source": [ "source": [
"# (TS=(\"artificial intelligence\") OR TS=(\"machine learning\") OR TS=(\"neural network\") OR TS=(\"big data\") OR TS=(\"deep learning\") OR TS=(\"computer vision\") OR TS=(\"pattern recognition\")) AND" "# (TS=(\"artificial intelligence\") OR TS=(\"machine learning\") OR TS=(\"neural network\") OR TS=(\"big data\") OR TS=(\"deep learning\") OR TS=(\"computer vision\") OR TS=(\"pattern recognition\")) AND"
@ -42,13 +44,13 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 53, "execution_count": 4,
"outputs": [ "outputs": [
{ {
"data": { "data": {
"text/plain": "'TS=(\"artificial intelligence\") OR TS=(\"machine learning\") OR TS=(\"neural network\") OR TS=(\"big data\") OR TS=(\"deep learning\") OR TS=(\"pattern recognition\") OR TS=(\"computer vision\") OR TS=(\"image classification\") OR TS=(\"reinforcement learning\") OR TS=(\"support vector machines\") OR TS=(\"recommender system\") OR TS=(\"random forest\") OR TS=(\"ensemble model\") OR TS=(\"image processing\") OR TS=(\"generative network\") OR TS=(\"ai ethic\") OR TS=(\"natural language processing\") OR TS=(\"clustering algorithm\") OR TS=(\"feature extraction\") OR TS=(\"time series forecast\") OR TS=(\"anomaly detection\") OR TS=(\"identity fraud detection\") OR TS=(\"dimensionality reduction\") OR TS=(\"feature elicitation\") OR TS=(\"chatbot\") OR TS=(\"clustering\") OR TS=(\"unsupervised learning\") OR TS=(\"supervised learning\") OR TS=(\"convolutional network\") OR TS=(\"adversarial network\")'" "text/plain": "'TS=(\"artificial intelligence\") OR TS=(\"machine learning\") OR TS=(\"neural network\") OR TS=(\"big data\") OR TS=(\"deep learning\") OR TS=(\"pattern recognition\") OR TS=(\"computer vision\") OR TS=(\"image classification\") OR TS=(\"reinforcement learning\") OR TS=(\"support vector machines\") OR TS=(\"recommender system\") OR TS=(\"random forest\") OR TS=(\"ensemble model\") OR TS=(\"image processing\") OR TS=(\"generative network\") OR TS=(\"ai ethic\") OR TS=(\"natural language processing\") OR TS=(\"clustering algorithm\") OR TS=(\"feature extraction\") OR TS=(\"time series forecast\") OR TS=(\"anomaly detection\") OR TS=(\"identity fraud detection\") OR TS=(\"dimensionality reduction\") OR TS=(\"feature elicitation\") OR TS=(\"chatbot\") OR TS=(\"clustering\") OR TS=(\"unsupervised learning\") OR TS=(\"supervised learning\") OR TS=(\"convolutional network\") OR TS=(\"adversarial network\")'"
}, },
"execution_count": 53, "execution_count": 4,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
} }
@ -60,7 +62,7 @@
"\n", "\n",
"keywords = [c.strip() for c in keywords[0].split(\",\")]\n", "keywords = [c.strip() for c in keywords[0].split(\",\")]\n",
"\n", "\n",
"keywords_str = ' OR '.join('TS=(\"'+k+'\")' for k in keywords)\n", "keywords_str = ' OR '.join('TS=(\\\"'+k+'\\\")' for k in keywords)\n",
"keywords_str" "keywords_str"
], ],
"metadata": { "metadata": {
@ -72,17 +74,8 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 54, "execution_count": 5,
"outputs": [ "outputs": [],
{
"data": {
"text/plain": "'CU=AUSTRIA OR CU=BELGIUM OR CU=BULGARIA OR CU=CROATIA OR CU=CYPRUS OR CU=CZECH REPUBLIC OR CU=DENMARK OR CU=ESTONIA OR CU=FINLAND OR CU=FRANCE OR CU=GERMANY OR CU=GREECE OR CU=HUNGARY OR CU=IRELAND OR CU=ITALY OR CU=LATVIA OR CU=LITHUANIA OR CU=LUXEMBOURG OR CU=MALTA OR CU=NETHERLANDS OR CU=POLAND OR CU=PORTUGAL OR CU=ROMANIA OR CU=SLOVAKIA OR CU=SLOVENIA OR CU=SPAIN OR CU=SWEDEN OR CU=NORWAY OR CU=SWITZERLAND OR CU=UNITED KINGDOM OR CU=ENGLAND OR CU=WALES OR CU=SCOTLAND OR CU=N IRELAND'"
},
"execution_count": 54,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [ "source": [
"scope_country_source = r'..\\eu_scope_countries.txt'\n", "scope_country_source = r'..\\eu_scope_countries.txt'\n",
"\n", "\n",
@ -90,11 +83,23 @@
" coop_countries = f.readlines()\n", " coop_countries = f.readlines()\n",
"coop_countries = [c.strip().upper() for c in coop_countries[0].split(\",\")]\n", "coop_countries = [c.strip().upper() for c in coop_countries[0].split(\",\")]\n",
"focal_countries = [c.strip().upper() for c in focal_countries_list]\n", "focal_countries = [c.strip().upper() for c in focal_countries_list]\n",
"eu_countries = coop_countries[0:-7]\n",
"assoc_countries = coop_countries[-7:]\n",
"\n",
"nor_c = [coop_countries[-7],]\n",
"swi_c = [coop_countries[-6],]\n",
"uk_c = coop_countries[-5:]\n",
"\n", "\n",
"foc_str = ' OR '.join([country_mode+'='+c for c in focal_countries])\n", "foc_str = ' OR '.join([country_mode+'='+c for c in focal_countries])\n",
"coop_str = ' OR '.join([country_mode+'='+c for c in coop_countries])\n", "coop_str = ' OR '.join([country_mode+'='+c for c in coop_countries])\n",
"eu_str = ' OR '.join([country_mode+'='+c for c in eu_countries])\n",
"assoc_str = ' OR '.join([country_mode+'='+c for c in assoc_countries])\n",
"\n", "\n",
"coop_str" "nor_str =' OR '.join([country_mode+'='+c for c in nor_c])\n",
"swi_str =' OR '.join([country_mode+'='+c for c in swi_c])\n",
"uk_str =' OR '.join([country_mode+'='+c for c in uk_c])\n",
"eu_sub_str = eu_str.split(' OR ')\n",
"# eu_sub_str"
], ],
"metadata": { "metadata": {
"collapsed": false, "collapsed": false,
@ -105,13 +110,48 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 55, "execution_count": 5,
"outputs": [],
"source": [],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 6,
"outputs": [
{
"data": {
"text/plain": "['UNITED KINGDOM', 'ENGLAND', 'WALES', 'SCOTLAND', 'N IRELAND']"
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"coop_countries[-5:]"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 7,
"outputs": [ "outputs": [
{ {
"data": { "data": {
"text/plain": "'CU=PEOPLES R CHINA OR CU=HONG KONG'" "text/plain": "'CU=PEOPLES R CHINA OR CU=HONG KONG'"
}, },
"execution_count": 55, "execution_count": 7,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
} }
@ -128,19 +168,19 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 58, "execution_count": 8,
"outputs": [ "outputs": [
{ {
"data": { "data": {
"text/plain": "'(CU=PEOPLES R CHINA OR CU=HONG KONG) AND (CU=AUSTRIA OR CU=BELGIUM OR CU=BULGARIA OR CU=CROATIA OR CU=CYPRUS OR CU=CZECH REPUBLIC OR CU=DENMARK OR CU=ESTONIA OR CU=FINLAND OR CU=FRANCE OR CU=GERMANY OR CU=GREECE OR CU=HUNGARY OR CU=IRELAND OR CU=ITALY OR CU=LATVIA OR CU=LITHUANIA OR CU=LUXEMBOURG OR CU=MALTA OR CU=NETHERLANDS OR CU=POLAND OR CU=PORTUGAL OR CU=ROMANIA OR CU=SLOVAKIA OR CU=SLOVENIA OR CU=SPAIN OR CU=SWEDEN OR CU=NORWAY OR CU=SWITZERLAND OR CU=UNITED KINGDOM OR CU=ENGLAND OR CU=WALES OR CU=SCOTLAND OR CU=N IRELAND) AND (TS=(\"artificial intelligence\") OR TS=(\"machine learning\") OR TS=(\"neural network\") OR TS=(\"big data\") OR TS=(\"deep learning\") OR TS=(\"pattern recognition\") OR TS=(\"computer vision\") OR TS=(\"image classification\") OR TS=(\"reinforcement learning\") OR TS=(\"support vector machines\") OR TS=(\"recommender system\") OR TS=(\"random forest\") OR TS=(\"ensemble model\") OR TS=(\"image processing\") OR TS=(\"generative network\") OR TS=(\"ai ethic\") OR TS=(\"natural language processing\") OR TS=(\"clustering algorithm\") OR TS=(\"feature extraction\") OR TS=(\"time series forecast\") OR TS=(\"anomaly detection\") OR TS=(\"identity fraud detection\") OR TS=(\"dimensionality reduction\") OR TS=(\"feature elicitation\") OR TS=(\"chatbot\") OR TS=(\"clustering\") OR TS=(\"unsupervised learning\") OR TS=(\"supervised learning\") OR TS=(\"convolutional network\") OR TS=(\"adversarial network\"))'" "text/plain": "'(CU=PEOPLES R CHINA OR CU=HONG KONG) AND (CU=AUSTRIA OR CU=BELGIUM OR CU=BULGARIA OR CU=CROATIA OR CU=CYPRUS OR CU=CZECH REPUBLIC OR CU=DENMARK OR CU=ESTONIA OR CU=FINLAND OR CU=FRANCE OR CU=GERMANY OR CU=GREECE OR CU=HUNGARY OR CU=IRELAND OR CU=ITALY OR CU=LATVIA OR CU=LITHUANIA OR CU=LUXEMBOURG OR CU=MALTA OR CU=NETHERLANDS OR CU=POLAND OR CU=PORTUGAL OR CU=ROMANIA OR CU=SLOVAKIA OR CU=SLOVENIA OR CU=SPAIN OR CU=SWEDEN OR CU=NORWAY OR CU=SWITZERLAND OR CU=UNITED KINGDOM OR CU=ENGLAND OR CU=WALES OR CU=SCOTLAND OR CU=N IRELAND) AND (TS=(\"artificial intelligence\") OR TS=(\"machine learning\") OR TS=(\"neural network\") OR TS=(\"big data\") OR TS=(\"deep learning\") OR TS=(\"pattern recognition\") OR TS=(\"computer vision\") OR TS=(\"image classification\") OR TS=(\"reinforcement learning\") OR TS=(\"support vector machines\") OR TS=(\"recommender system\") OR TS=(\"random forest\") OR TS=(\"ensemble model\") OR TS=(\"image processing\") OR TS=(\"generative network\") OR TS=(\"ai ethic\") OR TS=(\"natural language processing\") OR TS=(\"clustering algorithm\") OR TS=(\"feature extraction\") OR TS=(\"time series forecast\") OR TS=(\"anomaly detection\") OR TS=(\"identity fraud detection\") OR TS=(\"dimensionality reduction\") OR TS=(\"feature elicitation\") OR TS=(\"chatbot\") OR TS=(\"clustering\") OR TS=(\"unsupervised learning\") OR TS=(\"supervised learning\") OR TS=(\"convolutional network\") OR TS=(\"adversarial network\")) AND PY=(2011-2022)'"
}, },
"execution_count": 58, "execution_count": 8,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
} }
], ],
"source": [ "source": [
"scope_query = f'({foc_str}) AND ({coop_str}) AND ({keywords_str})'\n", "scope_query = f'({foc_str}) AND ({coop_str}) AND ({keywords_str}) AND PY=(2011-2022)'\n",
"scope_query" "scope_query"
], ],
"metadata": { "metadata": {
@ -152,19 +192,19 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 60, "execution_count": 9,
"outputs": [ "outputs": [
{ {
"data": { "data": {
"text/plain": "'(CU=AUSTRIA OR CU=BELGIUM OR CU=BULGARIA OR CU=CROATIA OR CU=CYPRUS OR CU=CZECH REPUBLIC OR CU=DENMARK OR CU=ESTONIA OR CU=FINLAND OR CU=FRANCE OR CU=GERMANY OR CU=GREECE OR CU=HUNGARY OR CU=IRELAND OR CU=ITALY OR CU=LATVIA OR CU=LITHUANIA OR CU=LUXEMBOURG OR CU=MALTA OR CU=NETHERLANDS OR CU=POLAND OR CU=PORTUGAL OR CU=ROMANIA OR CU=SLOVAKIA OR CU=SLOVENIA OR CU=SPAIN OR CU=SWEDEN OR CU=NORWAY OR CU=SWITZERLAND OR CU=UNITED KINGDOM OR CU=ENGLAND OR CU=WALES OR CU=SCOTLAND OR CU=N IRELAND) AND (TS=(\"artificial intelligence\") OR TS=(\"machine learning\") OR TS=(\"neural network\") OR TS=(\"big data\") OR TS=(\"deep learning\") OR TS=(\"pattern recognition\") OR TS=(\"computer vision\") OR TS=(\"image classification\") OR TS=(\"reinforcement learning\") OR TS=(\"support vector machines\") OR TS=(\"recommender system\") OR TS=(\"random forest\") OR TS=(\"ensemble model\") OR TS=(\"image processing\") OR TS=(\"generative network\") OR TS=(\"ai ethic\") OR TS=(\"natural language processing\") OR TS=(\"clustering algorithm\") OR TS=(\"feature extraction\") OR TS=(\"time series forecast\") OR TS=(\"anomaly detection\") OR TS=(\"identity fraud detection\") OR TS=(\"dimensionality reduction\") OR TS=(\"feature elicitation\") OR TS=(\"chatbot\") OR TS=(\"clustering\") OR TS=(\"unsupervised learning\") OR TS=(\"supervised learning\") OR TS=(\"convolutional network\") OR TS=(\"adversarial network\"))'" "text/plain": "'(CU=PEOPLES R CHINA OR CU=HONG KONG) AND (TS=(\"artificial intelligence\") OR TS=(\"machine learning\") OR TS=(\"neural network\") OR TS=(\"big data\") OR TS=(\"deep learning\") OR TS=(\"pattern recognition\") OR TS=(\"computer vision\") OR TS=(\"image classification\") OR TS=(\"reinforcement learning\") OR TS=(\"support vector machines\") OR TS=(\"recommender system\") OR TS=(\"random forest\") OR TS=(\"ensemble model\") OR TS=(\"image processing\") OR TS=(\"generative network\") OR TS=(\"ai ethic\") OR TS=(\"natural language processing\") OR TS=(\"clustering algorithm\") OR TS=(\"feature extraction\") OR TS=(\"time series forecast\") OR TS=(\"anomaly detection\") OR TS=(\"identity fraud detection\") OR TS=(\"dimensionality reduction\") OR TS=(\"feature elicitation\") OR TS=(\"chatbot\") OR TS=(\"clustering\") OR TS=(\"unsupervised learning\") OR TS=(\"supervised learning\") OR TS=(\"convolutional network\") OR TS=(\"adversarial network\"))'"
}, },
"execution_count": 60, "execution_count": 9,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
} }
], ],
"source": [ "source": [
"ch_scope_query = f'({coop_str}) AND ({keywords_str})'\n", "ch_scope_query = f'({foc_str}) AND ({keywords_str})'\n",
"ch_scope_query" "ch_scope_query"
], ],
"metadata": { "metadata": {
@ -173,6 +213,140 @@
"name": "#%%\n" "name": "#%%\n"
} }
} }
},
{
"cell_type": "code",
"execution_count": 10,
"outputs": [
{
"data": {
"text/plain": "'(CU=AUSTRIA OR CU=BELGIUM OR CU=BULGARIA OR CU=CROATIA OR CU=CYPRUS OR CU=CZECH REPUBLIC OR CU=DENMARK OR CU=ESTONIA OR CU=FINLAND OR CU=FRANCE OR CU=GERMANY OR CU=GREECE OR CU=HUNGARY OR CU=IRELAND OR CU=ITALY OR CU=LATVIA OR CU=LITHUANIA OR CU=LUXEMBOURG OR CU=MALTA OR CU=NETHERLANDS OR CU=POLAND OR CU=PORTUGAL OR CU=ROMANIA OR CU=SLOVAKIA OR CU=SLOVENIA OR CU=SPAIN OR CU=SWEDEN) AND (TS=(\"artificial intelligence\") OR TS=(\"machine learning\") OR TS=(\"neural network\") OR TS=(\"big data\") OR TS=(\"deep learning\") OR TS=(\"pattern recognition\") OR TS=(\"computer vision\") OR TS=(\"image classification\") OR TS=(\"reinforcement learning\") OR TS=(\"support vector machines\") OR TS=(\"recommender system\") OR TS=(\"random forest\") OR TS=(\"ensemble model\") OR TS=(\"image processing\") OR TS=(\"generative network\") OR TS=(\"ai ethic\") OR TS=(\"natural language processing\") OR TS=(\"clustering algorithm\") OR TS=(\"feature extraction\") OR TS=(\"time series forecast\") OR TS=(\"anomaly detection\") OR TS=(\"identity fraud detection\") OR TS=(\"dimensionality reduction\") OR TS=(\"feature elicitation\") OR TS=(\"chatbot\") OR TS=(\"clustering\") OR TS=(\"unsupervised learning\") OR TS=(\"supervised learning\") OR TS=(\"convolutional network\") OR TS=(\"adversarial network\"))'"
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"eu_scope_query = f'({eu_str}) AND ({keywords_str})'\n",
"eu_scope_query"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 11,
"outputs": [],
"source": [
"sub_queries = [f'PY=(2011-2022) AND ({i_str}) AND ({keywords_str})' for i_str in [foc_str,eu_str,assoc_str,nor_str,swi_str,uk_str]+eu_sub_str]"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 12,
"outputs": [],
"source": [
"from wossel_miners import wos_fetch_entries,wos_fetch_yearly_output"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 13,
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████| 33/33 [12:49<00:00, 23.31s/it]\n"
]
}
],
"source": [
"wos_fetch_yearly_output(query_str_list=sub_queries)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 14,
"outputs": [
{
"data": {
"text/plain": "'(CU=PEOPLES R CHINA OR CU=HONG KONG) AND (CU=AUSTRIA OR CU=BELGIUM OR CU=BULGARIA OR CU=CROATIA OR CU=CYPRUS OR CU=CZECH REPUBLIC OR CU=DENMARK OR CU=ESTONIA OR CU=FINLAND OR CU=FRANCE OR CU=GERMANY OR CU=GREECE OR CU=HUNGARY OR CU=IRELAND OR CU=ITALY OR CU=LATVIA OR CU=LITHUANIA OR CU=LUXEMBOURG OR CU=MALTA OR CU=NETHERLANDS OR CU=POLAND OR CU=PORTUGAL OR CU=ROMANIA OR CU=SLOVAKIA OR CU=SLOVENIA OR CU=SPAIN OR CU=SWEDEN OR CU=NORWAY OR CU=SWITZERLAND OR CU=UNITED KINGDOM OR CU=ENGLAND OR CU=WALES OR CU=SCOTLAND OR CU=N IRELAND) AND (TS=(\"artificial intelligence\") OR TS=(\"machine learning\") OR TS=(\"neural network\") OR TS=(\"big data\") OR TS=(\"deep learning\") OR TS=(\"pattern recognition\") OR TS=(\"computer vision\") OR TS=(\"image classification\") OR TS=(\"reinforcement learning\") OR TS=(\"support vector machines\") OR TS=(\"recommender system\") OR TS=(\"random forest\") OR TS=(\"ensemble model\") OR TS=(\"image processing\") OR TS=(\"generative network\") OR TS=(\"ai ethic\") OR TS=(\"natural language processing\") OR TS=(\"clustering algorithm\") OR TS=(\"feature extraction\") OR TS=(\"time series forecast\") OR TS=(\"anomaly detection\") OR TS=(\"identity fraud detection\") OR TS=(\"dimensionality reduction\") OR TS=(\"feature elicitation\") OR TS=(\"chatbot\") OR TS=(\"clustering\") OR TS=(\"unsupervised learning\") OR TS=(\"supervised learning\") OR TS=(\"convolutional network\") OR TS=(\"adversarial network\")) AND PY=(2011-2022)'"
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"scope_query"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 16,
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Hoooold...\n",
"27672 records found! Here we go in 93 steps...\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████| 92/92 [09:38<00:00, 6.29s/it]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"final batch of 27601-27672\n"
]
}
],
"source": [
"wos_fetch_entries(query_str=scope_query)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
} }
], ],
"metadata": { "metadata": {

@ -0,0 +1,266 @@
import os
import glob
import pytest
import time
from datetime import datetime
import json
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.common.action_chains import ActionChains
from selenium.webdriver.support import expected_conditions
from selenium.webdriver.support.wait import WebDriverWait
from selenium.webdriver.common.keys import Keys
from selenium.webdriver.common.desired_capabilities import DesiredCapabilities
# from selenium.webdriver.chrome.options import Options
from selenium.webdriver.firefox.options import Options
from tqdm import tqdm
import random
def close_pendo_windows(driver):
'''Close guiding windows'''
# Cookies
try:
driver.find_element(By.XPATH, '//*[@id="onetrust-accept-btn-handler"]').click()
except:
pass
# "Got it"
try:
driver.find_element(By.XPATH, '//button[contains(@class, "_pendo-button-primaryButton")]').click()
except:
pass
# "No thanks"
try:
driver.find_element(By.XPATH, '//button[contains(@class, "_pendo-button-secondaryButton")]').click()
except:
pass
# What was it... I forgot...
try:
driver.find_element(By.XPATH, '//span[contains(@class, "_pendo-close-guide")').click()
except:
pass
# Overlay
try:
driver.find_element(By.XPATH, '//div[contains(@class, "cdk-overlay-container")').click()
except:
pass
def wos_fetch_entries(query_str="TS=\"web of science\" AND PY=(2008-2010)",
wait_mu=1, wait_sigma=0.2, debug=False):
now = datetime.now() # current date and time
date_time = now.strftime("%Y-%m-%d-%H-%M-%S-%f")+"save"
options = Options()
# init directory
download_path = fr'C:\Users\radvanyi\PycharmProjects\ZSI_analytics\WOS\wos_extract\wos_downloads\entry_batches\{date_time}'
os.makedirs(download_path, exist_ok=True)
files = glob.glob(fr'{download_path}\*')
for f in files:
os.remove(f)
options.set_preference("browser.download.folderList", 2)
options.set_preference("browser.download.manager.showWhenStarting", False)
options.set_preference("browser.helperApps.neverAsk.saveToDisk", "text/csv/xls")
options.set_preference("browser.download.dir", download_path)
with open(fr'{download_path}\query.txt', "w") as f:
f.write(query_str)
# options.headless = True
if debug==False:
options.add_argument('--headless')
driver = webdriver.Firefox(options=options)
driver.get("https://www.webofscience.com/")
driver.set_window_size(974, 1040)
try:
WebDriverWait(driver, 30).until(
expected_conditions.visibility_of_element_located((By.ID, "onetrust-reject-all-handler")))
driver.find_element(By.ID, "onetrust-reject-all-handler").click()
except:
close_pendo_windows(driver)
WebDriverWait(driver, 30).until(
expected_conditions.visibility_of_element_located((By.LINK_TEXT, "Advanced Search")))
WebDriverWait(driver, 30).until(
expected_conditions.invisibility_of_element_located((By.ID, "onetrust-pc-dark-filter ot-fade-in")))
print("Hoooold...")
time.sleep(2)
WebDriverWait(driver, 30).until(expected_conditions.element_to_be_clickable((By.LINK_TEXT, "Advanced Search")))
driver.find_element(By.LINK_TEXT, "Advanced Search").click()
WebDriverWait(driver, 30).until(expected_conditions.element_to_be_clickable((By.ID, "advancedSearchInputArea")))
driver.find_element(By.ID, "advancedSearchInputArea").click()
driver.find_element(By.ID, "advancedSearchInputArea").send_keys(query_str)
driver.find_element(By.CSS_SELECTOR, ".mat-menu-trigger > svg").click()
driver.find_element(By.CSS_SELECTOR, ".cdk-focused > span").click()
WebDriverWait(driver, 30).until(expected_conditions.visibility_of_element_located((By.CSS_SELECTOR, ".brand-blue")))
driver.execute_script("window.scrollTo(0,0)")
count_str = driver.find_element(By.CSS_SELECTOR, ".brand-blue").text
count_int = int(count_str.replace(",", "").replace(".", "").strip())
print(f'{count_int} records found! Here we go in {int(count_int / 300) + 1} steps...')
for i in tqdm(range(1, count_int - 300, 300), position=0, leave=True):
# print(f'records {i}-{i+299}')
if i == 1:
driver.find_element(By.XPATH, "//app-export-menu/div/button").click()
# driver.find_element(By.ID, "exportToExcelButton").click()
driver.find_element(By.ID, "exportToTabWinButton").click()
driver.find_element(By.CSS_SELECTOR, "#radio3 .mat-radio-outer-circle").click()
driver.find_element(By.NAME, "markTo").clear()
driver.find_element(By.NAME, "markTo").send_keys("300")
driver.find_element(By.CSS_SELECTOR, ".margin-top-5 > .dropdown").click()
driver.find_element(By.XPATH, "//span[contains(.,\'Full Record\')]").click()
driver.find_element(By.CSS_SELECTOR, ".mat-flat-button .ng-star-inserted").click()
WebDriverWait(driver, 30).until(expected_conditions.invisibility_of_element_located(
(By.CSS_SELECTOR, ".mat-flat-button .ng-star-inserted")))
time.sleep(random.gauss(wait_mu, wait_sigma))
else:
WebDriverWait(driver, 30).until(expected_conditions.invisibility_of_element_located(
(By.CSS_SELECTOR, ".mat-flat-button .ng-star-inserted")))
driver.find_element(By.XPATH, "//app-export-menu/div/button").click()
# driver.find_element(By.ID, "exportToExcelButton").click()
driver.find_element(By.ID, "exportToTabWinButton").click()
driver.find_element(By.CSS_SELECTOR, "#radio3 .mat-radio-container").click()
driver.find_element(By.NAME, "markFrom").clear()
driver.find_element(By.NAME, "markFrom").send_keys(f"{i}")
driver.find_element(By.NAME, "markTo").clear()
driver.find_element(By.NAME, "markTo").send_keys(f"{i + 299}")
driver.find_element(By.CSS_SELECTOR, ".margin-top-5 > .dropdown").click()
driver.find_element(By.XPATH, "//span[contains(.,\'Full Record\')]").click()
driver.find_element(By.CSS_SELECTOR, ".mat-flat-button .ng-star-inserted").click()
WebDriverWait(driver, 30).until(expected_conditions.invisibility_of_element_located(
(By.CSS_SELECTOR, ".mat-flat-button .ng-star-inserted")))
time.sleep(random.gauss(wait_mu, wait_sigma))
# Absolute path of a file
old_name = fr"{download_path}\savedrecs.txt"
new_name = fr"{download_path}\records_{i}_{i + 299}.txt"
# Renaming the file
os.rename(old_name, new_name)
if (i + 299) % count_int != 0:
print(f'final batch of {i + 300}-{count_int}')
WebDriverWait(driver, 30).until(expected_conditions.invisibility_of_element_located(
(By.CSS_SELECTOR, ".mat-flat-button .ng-star-inserted")))
driver.find_element(By.XPATH, "//app-export-menu/div/button").click()
# driver.find_element(By.ID, "exportToExcelButton").click()
driver.find_element(By.ID, "exportToTabWinButton").click()
driver.find_element(By.CSS_SELECTOR, "#radio3 .mat-radio-container").click()
driver.find_element(By.NAME, "markFrom").clear()
driver.find_element(By.NAME, "markFrom").send_keys(f"{i + 300}")
driver.find_element(By.NAME, "markTo").clear()
driver.find_element(By.NAME, "markTo").send_keys(f"{count_int}")
driver.find_element(By.CSS_SELECTOR, ".margin-top-5 > .dropdown").click()
driver.find_element(By.XPATH, "//span[contains(.,\'Full Record\')]").click()
driver.find_element(By.CSS_SELECTOR, ".mat-flat-button .ng-star-inserted").click()
WebDriverWait(driver, 30).until(expected_conditions.invisibility_of_element_located(
(By.CSS_SELECTOR, ".mat-flat-button .ng-star-inserted")))
time.sleep(random.gauss(wait_mu, wait_sigma))
# Absolute path of a file
old_name = fr"{download_path}\savedrecs.txt"
new_name = fr"{download_path}\records_{i + 300}_{count_int}.txt"
# Renaming the file
time.sleep(0.1)
os.rename(old_name, new_name)
time.sleep(2)
time.sleep(random.gauss(wait_mu, wait_sigma))
driver.close()
def wos_fetch_yearly_output(query_str_list = (
"TS=\"web of science\" AND PY=(2008-2010)",
"TS=\"artificial intelligence\" AND PY=(2011-2022)"),
wait_mu=1, wait_sigma=0.2,debug=False):
# if isinstance(query_iterable,tuple) or
for query_str in tqdm(query_str_list):
options = Options()
# query_file_str = query_str.replace('"', '``')
now = datetime.now() # current date and time
date_time = now.strftime("%Y-%m-%d-%H-%M-%S-%f")+"save"
# init directory
download_path = fr'C:\Users\radvanyi\PycharmProjects\ZSI_analytics\WOS\wos_extract\wos_downloads\aggregated\{date_time}'
os.makedirs(download_path, exist_ok=True)
files = glob.glob(fr'{download_path}\*')
for f in files:
os.remove(f)
options.set_preference("browser.download.folderList", 2)
options.set_preference("browser.download.manager.showWhenStarting", False)
options.set_preference("browser.helperApps.neverAsk.saveToDisk", "text/csv/xls")
options.set_preference("browser.download.dir", download_path)
with open(fr'{download_path}\query.txt', "w") as f:
f.write(query_str)
# options.headless = True
if debug == False:
options.add_argument('--headless')
driver = webdriver.Firefox(options=options)
driver.get("https://www.webofscience.com/")
driver.set_window_size(974, 1040)
try:
WebDriverWait(driver, 30).until(
expected_conditions.visibility_of_element_located((By.ID, "onetrust-reject-all-handler")))
driver.find_element(By.ID, "onetrust-reject-all-handler").click()
except:
close_pendo_windows(driver)
WebDriverWait(driver, 30).until(
expected_conditions.visibility_of_element_located((By.LINK_TEXT, "Advanced Search")))
WebDriverWait(driver, 30).until(
expected_conditions.invisibility_of_element_located((By.ID, "onetrust-pc-dark-filter ot-fade-in")))
# print("Hoooold...")
time.sleep(2)
WebDriverWait(driver, 30).until(expected_conditions.element_to_be_clickable((By.LINK_TEXT, "Advanced Search")))
driver.find_element(By.LINK_TEXT, "Advanced Search").click()
WebDriverWait(driver, 30).until(expected_conditions.element_to_be_clickable((By.ID, "advancedSearchInputArea")))
driver.find_element(By.ID, "advancedSearchInputArea").click()
driver.find_element(By.ID, "advancedSearchInputArea").send_keys(query_str)
driver.find_element(By.CSS_SELECTOR, ".mat-menu-trigger > svg").click()
driver.find_element(By.CSS_SELECTOR, ".cdk-focused > span").click()
WebDriverWait(driver, 30).until(
expected_conditions.visibility_of_element_located((By.CSS_SELECTOR, ".brand-blue")))
driver.execute_script("window.scrollTo(0,0)")
count_str = driver.find_element(By.CSS_SELECTOR, ".brand-blue").text
count_int = int(count_str.replace(",", "").replace(".", "").strip())
# print(f'{count_int} records found!')
driver.find_element(By.XPATH, "//span[contains(.,\'Analyze Results\')]").click()
# element = driver.find_element(By.CSS_SELECTOR, ".search-terms")
# actions = ActionChains(driver)
# actions.move_to_element(element).perform()
driver.find_element(By.CSS_SELECTOR, "#snSelectCategories svg").click()
driver.find_element(By.XPATH, "//span[contains(.,\'Publication Years\')]").click()
driver.find_element(By.XPATH, "//mat-radio-button[@id=\'mat-radio-3\']/label/span/span").click()
driver.find_element(By.XPATH, "//span[contains(.,\'Download data table\')]").click()
# Absolute path of a file
old_name = fr"{download_path}\analyze.txt"
new_name = fr'{download_path}\analyze_PY_{date_time}_.txt'
# Renaming the file
time.sleep(2)
os.rename(old_name, new_name)
time.sleep(random.gauss(wait_mu, wait_sigma))
driver.close()
if __name__ == '__main__':
wos_fetch_entries(debug=False)
wos_fetch_yearly_output(debug=False)

File diff suppressed because one or more lines are too long
Loading…
Cancel
Save